domingo, 3 de mayo de 2015

SISTEMA DIÉDRICO: EL PLANO


Representamos un plano mediante sus TRAZAS, esto es, mediante las rectas de intersección de éste con los planos horizontal y vertical de proyección.
Dichas rectas, que suelen nombrarse mediante letras griegas con su correspondiente subíndice, se cortan en un punto de la Linea de Tierra.
Los planos , por ser ilimitados se prolongan a partir de su punto de concurrencia sobre la LT. Claro está, la parte vista será la contenida en el primer cuadrante o diedro.





Si una recta pertenece a un plano, sus trazas (puntos) deberán situarse sobre las del  plano.


Si un punto pertenece al plano deberá estar contenido en una recta del mismo.




FORMAS DE DEFINIR UN PLANO:
En ésta presentación podéis ver las distintas formas de definir un plano en el Sistema Diédrico.





Un plano puede estar definido por: 
-Dos rectas que se cortan.

-Dos rectas paralelas


-Una recta y un punto que no pertenece a dicha recta. El problema se reduce a hacer pasar por dicho punto una paralela a la recta dada, o bien tomar un punto de dicha recta y trazar una recta que pase por dicho punto y por el punto dato, es decir, convertir ese caso en los casos 1 ó 2.

-Tres puntos no alineados.
El problema se reduce nuevamente a los casos 1 ó 2.



Os dejo unas presentaciones sobre los tipos de planos, así como las rectas que estos pueden contener que creo que pueden seros de utilidad.









Os dejo una serie de ejercicios realizados con MONGGE.
Ya sabéis que podéis ampliar el ejercicio y verlo a pantalla completa. Además si os interesa que se pare en sitios concretos para que os de tiempo a entender cada paso, podéis hacer CLIC sobre el paso correspondiente para activar la pausa (el paso seleccionado aparecerá de color rojo).


4.1.- PLANO DEFINIDO POR DOS RECTAS QUE SE CORTAN
(Ojo con la diferencia entre cortarse y cruzarse. Siempre os digo que los aviones, afortunadamente se cruzan, es decir, van a distintas alturas aunque vistos desde arriba pudiera parecer que se superponen).

4.2.- PLANO DEFINIDO POR DOS RECTAS PARALELAS Ir al enlace

4.3.- PLANO DEFINIDO POR TRES PUNTOS NO ALINEADOS
4.4.- PLANO DEFINIDO POR SU RECTA DE MÁXIMA INCLINACIÓN (o de máxima pendiente). 
4.6.- PLANO QUE CONTENIENDO A UN PUNTO ES PARALELO AL PV

Otros ejercicios (lámina 5)
-5.1
-5.2
-5.3
-5.4
-5.5
-5.6

PERTENENCIA DE PUNTO A PLANO

  Un punto pertenece a un plano cuando está contenido en una recta de ese plano.
 Ese punto puede pertenecer a cualquiera de los cuadrantes, ya que,aunque sólo sean visibles los elementos contenidos en el primer cuadrante o diedro, los planos son ilimitados, es decir, se extienden más allá de sus trazas pasando a los demás cuadrantes.

En el siguiente ejercicio se resuelve la pertenencia al plano de dos puntos situados en distintos cuadrantes o diedros. 
En este caso se nos da una sola de las proyecciones y se nos pide la restante teniendo en cuenta que el punto pertenece al plano.
 La mecánica en ambos casos es la misma: Se hace pasar una recta, que generalmente es una frontal u horizontal de plano (por la facilidad de su trazado) de forma que contenga al punto y, así poder referir la proyección buscada sobre ésta.

PERTENENCIA DE PUNTOS Y PLANOS

...

Aquí os dejo la solución a uno de los ejercicios sobre pertenencia de punto a plano explicado para que os resulte más fácil de entender.
 Es conveniente que veáis que el método no varía independientemente de si el punto pertenece al primer cuadrante o a cualquiera de los demás.  

 -Ejercicio 6.1. Plano horizontal (o frontal).
 La figura contenida en dicho plano se verá proyectado en verdadera magnitud sobre el plano de proyección al que el plano dado es paralelo.

-Ejercicio 6.2. Plano proyectante horizontal (o vertical)

La figura plana puede estar contenida en un plano proyectante. Modifica la forma del cuadrilátero contenido en el plano beta, y observa en qué planos de proyección se ven ciertas medidas en Verdadera Magnitud.
 Si pulsas el botón derecho y desplazas el ratón podrás girar los planos en el espacio y observar mejor las proyecciones de la figura plana. 



-Ejercicio 6.3 
Una figura plana estará contenida en un plano si todos sus puntos lo están. Generalmente nos darán las proyecciones incompletas y nos pedirán que determinemos las restantes teniendo en cuenta que la figura pertenece a un plano.  Para ello nos valdremos de rectas que perteneciendo al plano contengan a su vez a los puntos (vértices).
Dichas rectas suelen ser horizontales o frontales de plano -por su facilidad de trazado; aunque pueden utilizarse para ello cualquier tipo de recta que pase por los puntos.










Modifica la posición de las proyecciones verticales de los vértices del cuadrilátero (situando sobre ellos el cursor y arrastrando), así como las trazas del plano con los deslizadores. ¿Cómo es la proyección horizontal del cuadrilátero cuando convertimos el plano oblicuo en proyectante horizontal?
 Observa igualmente que si modificas la posición de los vértices haciendo que los lados del cuadrilátero queden paralelos en una de las proyecciones, dicho paralelismo se mantendrá también en la otra proyección.

 -Ejercicio 6.4
En el caso de que el plano que contiene a la figura sea paralelo a la Linea de Tierra podríamos recurrir a la tercera proyección para resolverlo:

-Solución recurriendo al plano de perfil
-Solución sin recurrir al plano de perfil
Ejercicios para hacer en clase.
Solución  (ejercicio 1)

No hay comentarios:

Publicar un comentario