Páginas

jueves, 18 de septiembre de 2014

LA CIRCUNFERENCIA

LA CIRCUFERENCIA (y el punto medio de las cuerdas como lugar geométrico).

 PROPIEDADES:
-Por tres puntos no alineados pasa una circunferencia. Si realizamos la mediatriz de dos de las cuerdas que definen esos tres puntos obtendremos el centro de la circunferencia.

-En una misma circuferencia todas las cuerdas del mismo tamaño abarcan arcos iguales.
(prueba a activar la animación en la construcción para comprobar que existe otro lugar geométrico que determinan los puntos medios de las cuerdas de un mismo tamaño dentro de una circunferencia).
-La mediatriz de una cuerda divide a esta y a su arco en dos partes iguales y pasa siempre por el centro de la circunferencia, determinando un diámetro (que es la cuerda mayor de la circunferencia).

Es importante también que veamos los ángulos en la circunferencia con mayor profundidad.
Aquí tenéis un applet de GeoGebra, con el que podéis comprobar la relación que existe entre el ángulo central e inscrito.
El valor del ángulo central es siempre doble que el del inscrito que abarca la misma cuerda.

Colocando los lados de ambos de forma que coincidan con el diámetro de la circunferencia se hace más sencillo demostrar que el valor del ángulo central es del doble que el del inscrito.
El ángulo en BOC es igual a 180º - 2 beta , dado que BOC es un triángulo isósceles, con dos lados iguales que son los radios de la circunferencia y con dos ángulos iguales por tanto.
La suma de los ángulos de un triángulo equivale a 180º.
El ángulo BOC es también igual a 180º -alfa, dado que son ángulos adyacentes (consecutivos y que suman 180º). De donde alfa= 2 beta 
 Los ángulos pueden ser además de inscritos, semiinscritos y centrales, interiores y exteriores a la circunferencia. El ángulo semiinscrito tiene como el inscrito la mitad del valor que el ángulo central que abarca su cuerda inscrita.Si desplazas el vértice hasta el interior de la circunferencia podrás comprobar que el ángulo se convierte en interior y que su valor equivale a la semisuma de los ángulos centrales que abarcan sus lados.
En el caso de que el ángulo sera exterior su valor sería el de su semidiferencia.

No hay comentarios:

Publicar un comentario