Páginas

domingo, 11 de mayo de 2014

PERPENDICULARIDAD (RECTA-PLANO)

En el caso de perpendicularidad entre rectas y planos en el SISTEMA DIÉDRICO nos vamos a encontrar con que, -al contrario de lo que ocurría con el paralelismo, ésta sí se va a ver reflejada en las proyecciones sobre los planos de referencia.

Esto es, si un plano y una recta son perpendiculares en el espacio, dicha perpendicularidad se verá reflejada en sus proyecciones. 

Es importante que dominemos el concepto de PERPENDICULARIDAD, ya que es la base sobre la que determinar las distancias entre planos, entre punto y plano, etc. 

Un ejemplo podría ser el trazado de la altura de una pirámide recta contenida en un plano oblicuo.

 Si se nos pide el trazado de un plano que conteniendo a un punto sea perpendicular a una recta dada deberemos en primer lugar hallar las trazas de una recta que contenga al punto, generalmente una horizontal o frontal de plano, debido a que una de sus proyecciones será paralela a la traza del plano buscado.(Aquí tenéis el ejercicio).

Plano perpendicular a recta por un punto

Traza un plano que conteniendo al punto A, sea perpendicular a la recta r.


- Recta perpendicular a un plano por uno de sus puntos. Ej 11.1
- El ejercicio 11.2 lo tenéis en el vídeo de debajo y también en una animación con Mongge.
   Se trata en realidad de un ejercicio de distancias en proyecciones.
- Recta perpendicular a un plano definido por otras dos que se cortan. Ej 11.3
- Recta perpendicular a un plano definido por su recta de máxima pendiente. Ej 11.4
- Plano perpendicular a una recta conteniendo un punto. Ej 12.1

DISTANCIA DE UN PUNTO A UN PLANO 

La determinación de distancias es la aplicación más usual de la perpendicularidad.
 En el siguiente ejercicio hallaremos dicha distancia tan sólo en proyecciones, aunque lo realmente interesante será hallar la verdadera magnitud de dicha distancia (ese será el siguiente concepto que aprenderemos).
Tenéis el ejercicio en dos formatos. En el caso del vídeo está explicado paso a paso, pero os lo subo también en formato MONGGE para que podáis verlo al ritmo que queráis.

Distancia de un punto a un plano

Determina (en proyecciones) la distancia existente entre el punto A y el plano dado.


 Os enlazo otro ejercicio similar a éste. En este caso el plano es paralelo a la Línea de Tierra con lo cual la distancia entre el punto y el plano se verá en Verdadera Magnitud en el plano de perfil. AQUÍ tenéis el ejercicio resuelto.


EJERCICIO 12.2 En este ejercicio se nos pide que dibujemos un plano conteniendo a un punto A que es el más cercano a otro que nos dan en proyecciones, P. En realidad nos están diciendo que la recta que une ambos puntos es perpendicular a ese plano y que A es el punto de intersección de ambos. 

No hay comentarios:

Publicar un comentario