miércoles, 28 de enero de 2015

CURVAS CÍCLICAS

Las curvas cíclicas o de rodadura representan la trayectoria de un punto de una circunferencia (llamada RULETA), que rueda sin resbalar, sobre una recta u otra circunferencia (BASE O DIRECTRIZ).
Suelen utilizarse en mecánica (engranajes) y poseen interesantes propiedades que os gustará conocer (al menos eso creo).


Aquí tenéis una estupenda presentación en la que podéis ver las características de cada una de dichas curvas, así como su construcción.


CICLOIDE
Es una curva plana, lugar geométrico de las distintas posiciones de un punto móvil contenido en una circunferencia.
La CICLOIDE puede ser normal si el punto que se desplaza es uno de los de la circunferencia, acortada si es un punto interior y alargada si es exterior.
Trazaremos la recta base o directriz tangente a la circunferencia ruleta o generatiz.
Ese punto de tangencia determina la posición inicial del punto móvil.
La directriz debe tener la medida de la rectificación de la circunferencia.
Por si no recordáis como hacerlo os dejo dos enlaces a dos vídeos:


-Método de Arquímedes.
-Rectificación de la semicircunferencia. (No olvidéis multiplicar la medida resultante por dos).


Debemos dividir después la circunferencia  y el segmento en el mismo número de partes iguales. (Es importante saber que  el número de partes va a determinar la precisión con la que tracemos la curva).
Ocho partes puede ser un número adecuado. En el caso de la circunferencia realizaría la construcción para inscribir en ella un octógono cuyos vértices determinarían las distintas posiciones del punto en su desplazamiento, es decir al rodar.
Aquí tenéis la construcción en formato MONGGE.


Cicloide

Dibujar una cicloide a partir de la circunferecia ruleta de centro O y su rectificada r.

La CICLOIDE tiene una serie de propiedades realmente curiosas:
Es BRAQUISTÓCRONA y TAUTÓCRONA...¿? 
Si queréis saber lo que significa esto, no dejéis de ver este sorprendente vídeo.

Accede a la página del profesor de matemáticas autor de este vídeo para saber más sobre la CICLOIDE.



 Si quieres practicar enlazada a la imagen tienes una estupenda herramienta de EDUCACIÓNPLASTICA.NET que te ayudará a comprender mejor el trazado de esta curiosa curva cíclica.
Puedes igualmente trazar sus versiones acortada y alargada.


Luis Pérez en su web uno.618, tiene una construcciones interactivas realmente interesantes realizadas con GeoGebra.
En este enlace tenéis las de la cicloide, pero podéis acceder desde ahí a las demás curvas.


EPICICLOIDE
Curva plana (abierta o cerrada), generada por un punto interior, exterior o perteneciente a una circunferencia denominada ruleta, que rueda exteriormente y sin deslizamiento sobre otra circunferencia de tamaño variable llamada directriz. Lógicamente ambas circunferencias pueden tener diferentes relaciones entre sus radio, y en función de ésto la curva que obtendremos tendrá una forma u otra.
Para calcular la longitud del arco que recorrerá la circunferencia ruleta sobre la directriz tras una vuelta completa de la primera, existe una fórmula, que relaciona los radios de ambas: a=360º r/r´. Siendo a el ángulo central de la circunferencia directriz que determina el arco de circunferencia recorrido por la ruleta tras una vuelta.
Así, si r´=2r , el valor del ángulo central recorrido por la ruleta será de 180º. 
Pulsa sobre la imagen para acceder sobre la construcción paso a paso de la Epicicloide.


En la imagen tenéis el enlace a la aplicación de educacionplastica.net con la que podréis trazar epicicloides con distintos valores radiales, para comprobar que la curva resultante varía de forma.
Si la circunferencia DIRECTRIZ tiene el mismo tamaño que la RULETA , obtenemos una curva que denominamos CARDIODE (su forma es similar a un corazón). Si la DIRECTRIZ  mide el doble que la RULETA , la figura que obtenemos se llama NEFROIDE (se parece a un riñón).


HIPOCICLOIDE
En esta curva ruleta y directriz son, como en la EPICICLOIDE dos circunferencias. La diferencia entre ambas radica en que en éste caso la ruleta rueda dentro de circunferencia directriz.


Dependiendo de la relación entre los RADIOS de ambas, obtenemos algunas CICLOIDES SINGULARES como puede ser el caso de la HIPOCICLOIDE RECTILÍNEA (transformación del movimiento circular en rectilíneo como ocurre en el caso de la biela-manivela)
Imagen: Wikipedia (sitúate sobre ella para ver la animación)








Aquí tenéis el enlace al ejercicio en formato MONGGE



Prueba a cambiar el radio de la circunferencia ruleta y comprueba lo que ocurre. Haz clic aquí


EVOLVENTE DE LA CIRCUNFERENCIA
 Es la curva que genera un punto fijo de una recta tangente a una circunferencia que se desplaza alrededor de ella sin resbalar.

Os dejo enlazada la lámina que vamos a realizar, por si queréis repetirla.

sábado, 24 de enero de 2015

CURVAS TÉCNICAS

Las curvas técnicas (óvalos, ovoides y espirales) están formadas por arcos de circunferencia tangentes entre sí.


Los óvalos y ovoides son curvas planas y cerradas, ya que empiezan y terminan en el mismo punto, compuestas por cuatro arcos de circunferencia tangentes interiores dos a dos. 
Los óvalos tienen dos ejes de simetría, mientras que el ovoide (llamado así por su forma de huevo) tan solo dispone uno. Es particularmente interesante que aprendáis a construir el óvalo que sustituye a la elipse en la perspectiva isométrica, y que sería la representación en ese sistema de representación de la circunferencia.


Las espirales son curvas abiertas y planas generadas por un punto que se aleja del núcleo, aumentando constantemente su radio de giro. 


ÓVALOS


 Construcción del óvalo conocido el EJE MAYOR

Óvalo conocido el eje mayor

Construcción de un óvalo del que se conoce el eje mayor.



Aquí tenéis en formato Mongge la llave fija que os he encargado hacer y en la que se utiliza esta curva técnica. 

Tangencias: Llave fija

Dibuja la llave fija dada a escala 1:1


OVOIDES
Os dejo la construcción del OVOIDE conocido su eje mayor CD mediante una animación de Mongge.

Ovoide conocido el eje mayor

Construcción de un OVOIDE conocido su eje mayor CD=120 mm


-
Aquí os dejo los ejercicios que vamos a realizar sobre óvalos y ovoides.
ESPIRALES
-ESPIRAL DE CUATRO CENTROS

Otro tipo de espiral que ya vimos al hablar del número de oro, es la conocida como espiral áurea o de Durero y que se obtiene al subdividir un rectángulo áureo en nuevos rectángulos de forma que conserven dichas proporciones.




Aquí podéis ver como trazar el ÓVALO ISOMÉTRICO en las tres caras de un cubo o, lo que es lo mismo, en los tres planos de una isometría.

ÓVALO ISOMÉTRICO

Dibuja los tres óvalos isométricos.


Aquí tenéis los ejercicios que debéis hacer por si queréis repetirlos o perdéis la fotocopia.

REPRESENTACIÓN DEL CONO Y  EL CILINDRO EN PERSPECTIVA ISOMÉTRICA.
- Representación del cono (Mongge)
- Representación del cilindro (Mongge)
Imprime los siguientes ejercicios sobre el cono y el cilindro. Es importante que te fijes en  colocación de la escuadra y el cartabón (o del cartabón y la regla) para trazar los ejes X, Y y Z en perspectiva isométrica.



Os dejo estos dibujos, para que os ayuden a trazar las siguientes figuras de revolución (Cono, cilindro y cono truncado) y así pongáis en práctica el trazado que habéis aprendido a realizar para representar mediante un ÓVALO la PERSPECTIVA ISOMÉTRICA de una CIRCUNFERENCIA sobre cualquiera de los tres PLANOS. 



Podéis modificar en este applet de GeoGebra tanto el radio de la base como la altura total del cono sin seccionar y la distancia respecto de la base a la que se da el corte. 
En este caso el plano es paralelo a la base y por eso obtenemos una nueva circunferencia, que al ser representada en perspectiva aparece como un óvalo isométrico.

Aunque lo habitual es que esas CIRCUNFERENCIAS en perspectiva formen parte de piezas más complejas.

sábado, 17 de enero de 2015

TANGENCIAS: EJERCICIOS DE APLICACIÓN

Aquí tenéis un pequeño vídeo explicándoos una de las piezas que os dí. Contiene tangencias básicas entre rectas y circunferencias (tangente común exterior a dos circunferencias dadas) y entre circunferencias ( con un arco de circunferencia de radio conocido). Tan sólo tenéis que recordar las CONDICIONES DE TANGENCIA en ambos casos:


- En el caso de la tangencia entre rectas y circunferencias, debéis recordar que el radio que pasa por el punto de tangencia siempre es perpendicular a la recta.
- Si hablamos de tangencias entre circunferencias deberéis saber que el punto de tangencia entre ambas está en la linea que une sus centros.



Aquí os dejo resueltas en formato Mongge siete de las piezas que os encargué hacer (la octava la tenéis en el vídeo):
-Pieza 1
-Pieza 2
-Pieza 3
-Pieza 4
-Pieza 5
-Pieza 7
-Pieza 8


Si os situáis sobre la imagen veréis en funcionamiento el mecanismo piñón-cremallera (en este caso con un tornillo sin fin), que transforma el movimiento  lineal en circular y que se vale, como otros muchos, del uso de tangencias (circunferencia tangente a una recta en este caso).


Podéis encontrar tangencias igualmente en los sistemas de engranajes con cadena (tangentes comunes exteriores a dos circunferencias), y en los sistemas de poleas con correa.
Os dejo este vídeo que hice con un programa de simulación llamado Algodoo para Tecnologías de 1º de ESO, en el que reconoceréis, supongo, una pieza denominada "engranaje loco" que, al colocarse entre otros dos engranajes, se encarga de que ambos giren en el mismo sentido, sin modificar por ello su relación de transmisión.
Aquí tenéis un montón de láminas  para que realicéis piezas industriales con tangencias (algunas de ellas ya las habéis hecho).
En muchas ocasiones deberemos aplicar una escala a la hora de representar piezas industriales u otros objetos cuyo tamaño puede ser mayor o menor que el del soporte.
Tenéis una buena explicación sobre como realizar escalas gráficas en la página Dibujotécnico.com.